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Utilization of 8 as a synthetic equivalent of 9 has so far been 
limited to protonation (hydrolysis) and halogenation, but other 
more useful electrophiles are being studied. 

8 9 

A typical experimental procedure for the preparation of 
allenol silyl ethers is as follows (run 6). To a stirred solution 
of 0.37 mL (3.2 mmol) of 1-hexyne in 5 mL of dry THF at 0 
0C was added 2.8 mL (3.2 mmol, 1.15 M) of MeLi (1:1 LiBr 
complex in ether). After 15 min, the solution was cooled to -78 
0C and 0.47 mL (3.0 mmol) of ethyl trimethylsilyl ketone was 
added dropwise. A white precipitate formed. After 15 min, 0.25 
mL (4.0 mmol) of MeI was added and the flask was warmed 
to 0 °C and stirred for 30 min. The contents were then parti­
tioned between cold aqueous 7% NaHCC>3 and ether-pentane 
(1:1) and washed with saturated NaCl. After drying (Na2S04, 
then K2CO3) and concentration of the organic layer, distilla­
tion of the residue (Kugelrohr, 24 mm, bath temperature 
89-91 0C) gave 0.50 g (74%) of 3-trimethylsilyloxy-5-
methyl-3,4-nonadiene as a clear, mobile liquid: NMR (CDCI3) 
5 0.12 (s, 9 H), 0.80-1.12 (m, 6 H), 1.20-1.68 (m, 4 H), 1.74 
(s, 3 H), 1.92-2.36 (m, 4 H); IR (salt plate) 2960, 1962,1628, 
1467, 1260, 1201, 1178, 855 cm'1; MS calcd for Ci3H26OSi 
226.1753, found 226.1738. 
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Molecular Mechanics Calculations of Reactivity 
Differences between Alicyclic Compounds 

Sir: 

The /-strain explanation of Brown for the differences in 
nucleophilic substitution, ketone reduction, cyanohydrin 
equilibria, etc., between alicyclic compounds represents one 
of the earliest attempts to relate steric energy changes ac­
companying sp3 ^ sp2 interconversions to chemical reactiv­
ity.la Thus Brown suggested that relief of torsional angle or 
Pitzer strain and of transanular repulsions eases the formation 
of an sp2 center in medium-ring compounds, opposite to 
strain-free cycloalkanes. Molecular mechanics force fields2 

allow calculations not only on ground states but in principle 
also on transition states and thus in particular on steric hin­
drance in reactivity. Other than in related earlier force-field 
approaches to reaction rates,3 a rigorous test of the /-strain 
hypothesis requires strain energy calculations of a large 
number of conformations for each ring compound. This is il­
lustrated with methylcyclodecane (Figure 1), where minimi­
zations using the Allinger force field2 yield the following 
conformer distribution. TCCC: Me in position 2, 16%; in po­
sition 3, 30%; in position 4,14%. BCB: Me in position 2,15%; 
in position 3, 22%; in position 4, 3%. Low-temperature 13C 
NMR measurements have so far offered limited information 
supporting conformational equilibria of medium-ring com­
pounds.4 

Figure 1. Cyclodecane conformations: TCCC, twist chair chair chair; BCB, 
boat chair boat. 
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Figure 2. Solvolysis rates in ethanol as a function of strain energy differ­
ences. 
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Figure 3. Solvolysis rates in trifluoroethanol as a function of strain energy 
differences. 

To calculate strain energy differences for solvolysis reactions 
of cycloalkyl tosylates we have simulated the sp3 ground state 
as methylcycloalkane and the sp2-like transition state as cy-
cloalkanone, assuming the strain energy difference AES be­
tween the methylcycloalkanes (weighted average) and the 
ketone conformer with the lowest energy to mimic the relevant 
steric changes. Use of the methyl instead of the tosyloxy group 
may be expected to lead to exaggeration of A£ s , but the nec­
essary solvation of the leaving group and the cation can, on the 
other hand, increase the steric requirements for the ground 
state more than for the transition state. 

We first measured solvolysis rates in 80% ethanol (25 0 C) 
and tried to correlate A £ s with the log k values, assuming the 
reactivity differences to be due more to activation enthalpy 
than to entropy changes (AA//* > AAS* T). The observed 
poor correlation (Figure 2) led us to investigate rates in the 
weakly nucleophilic trifluoroethanol5 (TFE, 97%, 25 0C) 
which can help to suppress differential solvent assisted path­
ways6 and thus to unify the solvolysis mechanism of the dif­
ferent tosylates. The log k values for TFE do in fact represent 
a linear function of A £ s (Figure 3); moreover, the observed 
sensitivity (m = 0.72) indicates that an increase in strain dif­
ferences A £ s yields almost the same numerical decrease in 
solvolysis activation energy. 

The results fully support the /-strain concept and imply that 
an sp2-like transition state occurs for all investigated com­
pounds at a similar point on the reaction coordinate and 
without differential hindrance of solvation. Analysis of the 
separate energy contributions by the force field (see supple­
mentary material) furthermore substantiates the original idea' 
of large Pitzer strain changes, since 55-75% of A£ s are ob­
tained from torsional and 1,4 van der Waals interactions; bond 
angle changes contribute 10-30% to AEs. Transanular re­
pulsions, however, are calculated to change by not more than 
3% between the sp3 and sp2 states even of medium rings. 

The solvolysis rate of cyclododecyl tosylate deviates sub­
stantially from the linear correlation (Figures 1 and2). This 
exception can be due to a breakdown of the assumption of a 
single common sp2 intermediate formation from all conformers 
of one cycloalkyl tosylate. The Curtin-Hammett principle113 

requires for the present case that equilibration between the 
sp2-like intermediates or transition states is much faster than 
their formation. This does not necessarily hold for cyclodo­
decane where conformational change is known to be much 
slower4d than in medium rings or in cyclopentane. Indeed the 
cyclododecane point comes closer to the regression line (from 
12 to 12') if AES is calculated between methyl and oxo sub­
stitution in the "corner" and "noncorner" ring position sepa­
rately, again with weighting according to the different con-
former stabilities. For the methyl compound the force-field 

calculation yields 38% corner and 62% noncorner substitution, 
in fair accordance with the experiment4"1 (33 and 67%, re­
spectively, at 25 0 C). 

Supplementary Material Available: ORTEP representations of the 
relevant conformers, torsional angles, and distribution of steric energy 
differences (10 pages). Ordering information is given on any current 
masthead page. 
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On the Stereochemistry of the Addition 
of Dimethylsilylene to cis- and frans-2-Butene1 

Sir: 

Silylenes, the second-row counterpart of carbenes, have been 
something of a poor relation in the family of divalent species. 
It has only been recently, through the efforts of the research 
groups of Barton, Gaspar, and Seyferth in this country, Ku-
mada and Sakurai in Japan, and others,2 that it has become 
clear that most, if not yet all, reactions of divalent carbon have 
their counterparts in silylene chemistry. Our knowledge of even 
the better known reactions of silylenes is still in a rather 
primitive state. For instance, despite the demonstration that 
siliranes can be formed from olefins and various silylene pre­
cursors,2,3 the stereochemistry of addition is not known. Such 
a determination is, of course, not nearly so simple for silicon 
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